
Tool Support for Incremental
Consistency Checking on Variability Models

Michael Vierhauser1 Deepak Dhungana2 Wolfgang Heider1 Rick Rabiser1 Alexander Egyed3
1 Christian Doppler Laboratory for
Automated Software Engineering

Johannes Kepler University
Linz, Austria

rabiser@ase.jku.at

2 Lero - The Irish Software
Engineering Research Centre

University of Limerick
Limerick, Ireland

deepak.dhungana@lero.ie

3 Institute for Systems Engineering and
Automation

Johannes Kepler University
Linz, Austria

alexander.egyed@jku.at

Abstract—The complexity of variability models makes it hard
for product line engineers to maintain their consistency over
time. Engineers need support to detect and resolve inconsisten-
cies. In this paper, we describe our initial results towards tool
support for incremental consistency checking on variability
models. The main aim of our research is to improve the overall
performance and scalability of consistency checking. We re-
port on experiences of integrating an existing incremental con-
sistency checker in the DOPLER product line tool suite.

Keywords − variability models, incremental consistency
checking, tool support.

I. INTRODUCTION AND MOTIVATION

Product line variability models are inherently complex.
Independent of the modeling approach used (e.g., feature-
oriented [1], decision-oriented [2], orthogonal [3]) real-world
variability models can easily contain several thousand ele-
ments with diverse and often complex dependencies.
Through the collaboration with our industry partner Siemens
VAI − the world's leading company in engineering and
plant-building for the iron, steel, and aluminum industries −
we have learned that engineers in practice face big challeng-
es in maintaining the consistency of variability models. The
consistency of models is, however, essential for deriving
correct products. It is also critical that variability models
correctly reflect the actual system (e.g., components defined
in the variability model must really exist). Therefore engi-
neers should be supported in detecting and keeping track of
inconsistencies during modeling.

Several consistency checking mechanisms have been re-
ported in the literature and have been applied to various
types of models [4], [5], [6]. A drawback of many of these
approaches is that they are only capable of checking the con-
sistency of entire models in a batch-oriented manner. This
means that the consistency constraints are evaluated for the
entire model at certain points in time (e.g., when saving a
model). Due to the complexity of real-world models (often
containing thousands of model elements and non-trivial de-
pendencies), such a "batch-oriented" approach to consistency
checking leads to performance problems. We also experi-
mented with a batch-oriented approach in the context of our

DOPLER product line engineering tool suite [7]. To improve
performance, we however decided to incorporate an existing
approach for incremental consistency checking of UML de-
sign models [8] in the context of product line variability
modeling. In this paper, we describe our initial results to-
wards tool support for incremental consistency checking on
variability models.

II. CONSISTENCY CHECKING FOR
DOPLER VARIABILITY MODELS

In collaboration with Siemens VAI we have been devel-
oping the decision-oriented product line engineering ap-
proach DOPLER [9].

A. DOPLER modeling language

DOPLER variability models comprise two elements: As-
sets and Decisions. Assets represent the core elements in the
product line (e.g., components). Assets can depend on each
other functionally (e.g., one component requires another
component) or structurally (e.g., a component is part of a
sub-system). DOPLER allows modeling assets at an arbitrary
granularity and with arbitrary attributes and dependencies
(based on a given set of basic types). Users can create do-
main-specific meta-models to define the types of assets, their
attributes, and dependencies [9].

In case of Siemens VAI, the asset types that are part of
variability models are components (representing Spring [10]
XML component descriptions which in turn represent Java
Beans), properties (key-value settings), resources (e.g., con-
figuration files), as well as documents (e.g., user documenta-
tion). Diverse domain-specific dependencies have been de-
fined, for example, a component can require other compo-
nents, a component can require properties, or a document
can contribute to a resource.

In DOPLER variation points are represented with deci-
sions. Decisions have a unique name and a question that is
asked to a user during product derivation. They can depend
on each other hierarchically (if a decision needs to be taken
before another decision becomes “visible”) or logically (if
taking a decision changes the value of another decision).
Possible types of decisions are Boolean, enumeration, string,
and number.

Figure 1. Siemens VAI meta-model overview. The upper part depicts the
high-level meta-model. The lower part depicts additional elements needed
to represent the code base of the product line. The relation of model level

and file level is provided via the implements relation.

B. Consistency Constraints

When defining consistency constraints for Siemens VAI,
our goal was to check consistency within the variability
model as well as between the model and the code base of the
product line. Our constraints therefore also check whether
the model elements are consistent with concrete implementa-
tion artifacts like (Spring XML) component definitions and
Java Beans. For constraints between the model level and the
actual code base we generate a model representation of the
code. For that reason the original DOPLER meta-model for
Siemens VAI has been extended to cover information on the
Spring files, the contained Java Beans, their properties, and
the relations among the diverse elements (cf. Figure 1). Ta-
ble 1 shows some examples of constraints that are relevant in
the context of our industry partner.

We differentiate between generic and domain-specific
(Siemens VAI) constraints. The generic constraints are rele-
vant in any DOPLER variability model. For example, it is
important to detect cycles between decisions (either based on
hierarchal or logical dependencies among them) in any
DOPLER model. These constraints are independent of the
domain-specific meta-model (depicted in Figure 1). We
therefore reuse these constraints and provide them as a core
functionality of the consistency checker.

Siemens VAI-specific constraints mainly address model
to code consistency. For instance, the most basic constraint
SVAI1 assures that each component modeled in the variabil-
ity model also exists in the code base of the product line.
This constraint prevents, for example, that components that
aren’t available anymore or are outdated and therefore have
been removed from the file system are not forgotten to be
purged in the variability model as well. The two constraints
SVAI2 and SVAI3 cover the relations between components
in the model, and the relations between Spring XML files in
the file system (these in fact depend on relations between the
Java Beans described in that Spring XML files). Both con-

straints assure that there aren’t any unnecessary relations
between components respectively and that no relations are
missing in the variability model.

TABLE I. EXAMPLES OF GENERIC (G) AND SIEMENS VAI-SPECIFIC
(SVAI) CONSTRAINTS

Constraints

Name Description

G1 List decision
A list decision must have at least

two options to choose from

G2 Mandatory attribute
Mandatory attributes must not

be empty

G3 Decision effect cycle
There must be no cycles caused

by logical decision dependencies

G4
Visibility condition
cycle

There must be no cycles caused
by hierarchical decision depend-

encies (visibility conditions)

G5
Visibility condition self
reference

A visibility condition must not
contain the decision itself

SVAI1 Component matching
Each component in the variabil-
ity model must exist in the prod-

uct line code base

SVAI2 Component relation

Relations between components
in the variability model must
also exist in the product line

code base

SVAI3 Java Bean relation

A relation between Java Beans
must be represented in the varia-

bility model as a component
relation

SVAI4 Variant type relation
Variant types must not have

requires relations

SVAI5 Variant type occurency

If two or more components are
identical, all of them must con-
tribute to a variant type compo-

nent

SVAI6 Variant type consistency
Only identical components must

contribute to a single variant
type component

To illustrate how the defined constraints work we discuss

constraint SVAI2 in detail by showing its high-level opera-
tion sequence: SVAI2 checks the necessity of requires rela-
tions between components. As illustrated in Figure 2, a re-
quires relation between two components in the model is only
needed if it is based on an existing dependency in the prod-
uct line code base. Each component is “implemented”
through a Spring file which in turn contains one or more Java
Beans. If at least one Java Bean defined in Spring file 1 re-
quires a Java Bean defined in Spring file 2, the relation on
component-level is needed. Otherwise the consistency check
will reveal the unneeded relation between component 1 and
component 2.

This consistency constraint is not inherently complex to
understand – indeed, most are of similar complexity. How-
ever, it is important to note that such consistency constraints
may have to be evaluated many times in a model. For exam-
ple, constraint SVAI2 needs to be evaluated for each requires
relationship among two components and there are thousands
of such requires relationships in our models.

Figure 2. Schematic view of constraint SVAI 2

III. TOWARDS INCREMENTAL CONSISTENCY CHECKING

SUPPORT FOR VARIABILITY MODELS

In our project with Siemens VAI, we developed a batch-
oriented consistency checker early in the project. It worked
fine as long as we were working with small variability mod-
els and a small number of constraints. The approach however
didn't scale for very large models and a high number of re-
quired consistency checks. The performance problems did
not allow to report inconsistencies to the user after each
change to a model.

We therefore started exploring the use of an incremental
consistency checker, which had been successfully evaluated
for large UML models as part of the UML/Analyzer tool for
instant consistency checking of UML models [8]. The tool
helps designers in detecting and tracking inconsistencies
correctly and quickly with every design change.

A consistency constraint needs to be re-evaluated if and
only if one of the affected model elements changes. We refer
to this set of model elements as the scope of a consistency
constraint. Identifying the scope is simple in principle, how-
ever, it is not possible to predict in advance what model ele-
ments are accessed by any given consistency constraint.

The UML/Analyzer tool circumvents this problem by ob-
serving the run-time behavior of consistency constraints dur-
ing their evaluation. To this end, the equivalent of a profiler
for consistency checking was developed. The profiling data
is used to establish a correlation between model elements
and consistency constraints (and inconsistencies). Based on
this correlation, it then decides when to re-evaluate con-
sistency constraints and when to display inconsistencies −
allowing an engineer to quickly identify all inconsistencies
that pertain to any part of the model of interest at any time.

IV. INTEGRATING THE INCREMENTAL CONSISTENCY

CHECKER IN THE DOPLER TOOL SUITE

We have been integrating the incremental consistency
checker approach in the Eclipse-based DOPLER tool suite.

Figure 3 shows a high-level architecture of our tool and the
main components of the checker.

The DOPLER variability model editor DecisionKing (#1)
supports creating and updating variability models.

The incremental consistency checker (#2) performs con-
straint initialization, management, and persistence and ap-
plies incremental checking to variability models independent
from the domain-specific meta-model used. This guarantees
that the approach can later be easily used with other meta-
models and is not limited to Siemens VAI.

Figure 3. High-level tool architecture of incremental consistency

checking within the DOPLER tool suite.

For instant consistency checking it is necessary to track
user changes during modelling. An event tracking and notifi-
cation mechanism (#3) allows observing changes to the vari-
ability model and the Eclipse workspace at a very detailed
level. It provides information about DOPLER variability
models being opened for editing and manages the propaga-
tion of change notifications from model elements to the in-
cremental consistency checker [1]. As described in the pre-
vious section, incremental consistency checking highly de-
pends on the ability of tracking and processing changes from
various sources. The more fine-grained these change events
can be tracked, the better performance can be achieved, be-
cause with each level of information detail fewer constraint
instances eventually need to be evaluated. Our event tracking
mechanism in the DOPLER tools allows to identify changes
down to the level of model element attributes. Therefore,
very few constraints need to be evaluated during incremental
consistency checking.

The model access tracker (#4) monitors and logs all read
access events to model elements for each single constraint
instance. Each call on a model element by a constraint has to
be done through a “model profiler”, which is capable of cap-
turing and tracking any read access on attribute level. This
evaluation profiling ensures that all necessary constraints are
re-evaluated when a change event occurs.

The consistency constraint definition (#5) uses the
Eclipse extension point mechanism to add constraints to the
incremental checking tool as different application domains
need specific constraints. Note that our approach distin-
guishes the definition of a constraint from its evaluation.

The error view (#6) provides feedback to the users on the
inconsistencies detected for the evaluated constraint. Eclipse
provides the marker mechanism, which allows for easy crea-
tion and management of occurring errors. To assure a high
level of flexibility, evaluation results are also provided
through the extension point mechanism to make them utiliz-
able in other plug-ins or in custom views.

V. APPLICATION EXAMPLE

A major goal when developing our incremental con-
sistency checker was to achieve a better usability and re-
sponsiveness for the modeler working with the DOPLER
tool suite and detecting and providing information on incon-
sistencies as early as possible. In the following we will de-
scribe a brief scenario of how a modeler can work with the
tool, and in which way the tool supports detecting and fixing
inconsistencies.

Figure 4 shows a screenshot of the DecisionKing varia-
bility model editor: In the Asset Overview (#1), the modeler
can find an outline of already defined assets. Assets can also
be added or removed here. The Detail View provides infor-
mation about the currently selected asset, their attrib-
utes (#2), as well as relations to other assets (#3). An error
view (#4) provides information on errors in the variability
model, i.e., inconsistencies.

Figure 4. DecisionKing Variability Modeling Tool and Error View

displaying inconsistencies found after changes to the model.

A typical modeling process starts with defining new as-
sets that are relevant in the newly created model. After defin-
ing all needed assets, the relations among them need to be
modeled. The modeler can add or remove relations to other
assets via drag & drop in the detail view (#3). In contrast to
the old batch-oriented approach, manipulating elements in

the model now has an immediate effect. After adding a rela-
tion to an asset all involved constraints are being re-
evaluated. Feedback about an inconsistency in the model is
provided in that second the user takes the wrong action. The
error view (#4) then provides detailed information on the
occurring inconsistency and the source responsible for that.
Assisted by this, the modeler can draw conclusions and re-
solve the occurring inconsistency by (in this example) re-
moving an unneeded relation from the model.

VI. CONCLUSIONS

We presented initial tool support for applying incremen-
tal consistency checking on variability models. Our experi-
ences with large-scale models demonstrate the performance
and scalability of the approach. In future work we will in-
crease the number of types of constraints and will also inves-
tigate how the dependencies among constraints can be ex-
ploited to further improve performance. Moreover, we will
analyze the performance of the approach in detail.

ACKNOWLEDGMENTS

This work has been conducted in cooperation with Sie-
mens VAI Metals Technologies and has been supported by
the Christian Doppler Forschungsgesellschaft, Austria. This
work has also been supported by FWF grant P21321-N15

REFERENCES
[1] K. C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, "Feature-

oriented domain analysis (FODA) feasibility study," TR CMU/SEI-
90TR-21, Carnegie Mellon Univ., Pittsburgh, PA, USA 1990.

[2] G. H. Campbell, Jr., S. R. Faulk, and D. M. Weiss, "Introduction To
Synthesis," INTRO_SYNTHESIS_PROCESS-90019-N, Software
Productivity Consortium, Herndon, VA, USA 1990.

[3] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite, R. L. Nord, K.
Pohl, B. Ramesh, A. Vilbig: "A Meta-model for Representing
Variability in Product Family Development". PFE 2003: 66-80.

[4] B. Belkhouche and C. Lemus, "Multiple View Analysis and Design,
"Proc. of the Viewpoint 96: Int'l WS on Multiple Perspectives in
Software Development, 1996.

[5] B. H. C. Cheng, E. Y. Wang, and R. H. Bourdeau, "A Graphical
Environment for Formally Developing Object-Oriented Software, "
Proc. of the 6th Int'l Conf. on Tools with Artificial Intelligence, New
Orleans, USA, 1994, pp. 26-32.

[6] A. Tsiolakis and H. Ehrig, "Consistency Analysis of UML Class and
Sequence Diagrams Using Attributed Graph Grammars," Proc. of the
Graph Transformation & Graph Grammars, Berlin, 2000, pp. 77-86.

[7] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer,
"Integrated tool support for sw. product line engineering, "Proc. 22nd
IEEE/ACM Int'l Conf. on Automated Sw Eng (ASE'07), pp. 533-534.

[8] A. Egyed, "Instant Consistency Checking for the UML," Proc. of the
28th Int'l Conf. on Sw. Eng. (ICSE), Shanghai, China, May 2006.

[9] D. Dhungana, P. Grünbacher, and R. Rabiser, "Domain-specific
Adaptations of Product Line Variability Modeling, "Proc. of the IFIP
WG 8.1 Working Conf. on Situational Method Engineering, Geneva,
Springer Series in CS, 2007, pp. 238-251.

[10] R. Johnson, J. Höller, and A. Arendsen, "Professional Java
Development with the Spring Framework," Wiley Publishing, 2005.

[11] W. Heider, R. Rabiser, D. Dhungana, P. Grünbacher, Tracking
Evolution in Model-based Product Lines. 1st Int'l WS on Model-
driven Approaches in Software Product Line Engineering (MAPLE
2009), Proc. (vol 2) of the 13th Int'l SW. Product Line Conf. (SPLC
2009), San Francisco, CA, 2009, Carnegie Mellon Univ., pp. 59-63.

